Eigenvalue convergence on perturbed Lipschitz domains for elliptic systems with mixed general decompositions of the boundary (Q1797840)

From MaRDI portal





scientific article; zbMATH DE number 6960309
Language Label Description Also known as
English
Eigenvalue convergence on perturbed Lipschitz domains for elliptic systems with mixed general decompositions of the boundary
scientific article; zbMATH DE number 6960309

    Statements

    Eigenvalue convergence on perturbed Lipschitz domains for elliptic systems with mixed general decompositions of the boundary (English)
    0 references
    0 references
    0 references
    22 October 2018
    0 references
    Given a bounded Lipschitz doubly-connected domain $\Omega_{0}=D_{1}\cup D_{2}\subset {\mathbb R}^{n}$, $\overline{D_{1}}\cap \overline{D_{2}}=\emptyset$, its perturbations $\Omega_{\varepsilon}$ are introduced as the interior of $\overline{\Omega}\cup \overline{T_{\varepsilon}}$, where the domains $T_{\varepsilon}$ are disjoint from $\Omega_{0}$ and $\partial T_{\varepsilon}\cap \partial D_{i}\neq \emptyset$ ($i=1,2$). These domains decrease with $\varepsilon$ and contain in small neighborhoods about given points $p_{1}\in \partial D_{1}$ and $p_{2}\in \partial D_{2}$. The decomposition $\partial \Omega_{0}=D\cup N$ is assumed, where $D$ is a nonempty relatively open part of $\partial \Omega_{0}$ such that $\partial D_{i}\cap D\cap \partial T_{\varepsilon}\neq \emptyset$ for $i=1,2$ and $\varepsilon\in (0,\varepsilon_{0})$. Let $N_{\varepsilon}=N\cap \partial \Omega_{\varepsilon}$ and $D_{\varepsilon}=\partial \Omega_{\varepsilon}\setminus N_{\varepsilon}$. Under consideration is the eigenvalue problem \[ Lu=-\sum_{i,j=1}^{n}\partial_{x_{j}}(A_{ij}u_{x_{i}})=\lambda u,\ u|_{D_{\varepsilon}}=0,\ \sum_{i,j=1}^{n}\nu_{j}A_{ij}u_{x_{i}}|_{N_{\varepsilon}}=0, \tag{1} \] where $A_{ij}(x)$ are $m\times m$ symmetric matrices and the operator $L$ is assumed to be elliptic (different ellipticity conditions are employed). Here $\nu=(\nu_{1},\ldots,\nu_{n})$ is the outward unit normal to $\partial \Omega_{0}$. The main result of the article is the estimate $|\lambda_{i\varepsilon}-\lambda_{i}|\leq C\varepsilon^{\delta}$ ($i\in {\mathbb N}$, $\delta>0$), where $\lambda_{i\varepsilon},\lambda_{i}$ are the eigenvalues of the problem (1) and the corresponding unperturbed problem, respectively, enumerated in nondecreasing order.
    0 references
    eigenvalues
    0 references
    elliptic systems
    0 references
    perturbed domains
    0 references
    mixed problem
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers