On the functional inequality \(f(x+y)+f(xy){\geq}f(x)+f(y)+f(x)f(y)\) (Q1801348)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the functional inequality \(f(x+y)+f(xy){\geq}f(x)+f(y)+f(x)f(y)\) |
scientific article; zbMATH DE number 202391
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the functional inequality \(f(x+y)+f(xy){\geq}f(x)+f(y)+f(x)f(y)\) |
scientific article; zbMATH DE number 202391 |
Statements
On the functional inequality \(f(x+y)+f(xy){\geq}f(x)+f(y)+f(x)f(y)\) (English)
0 references
26 May 1994
0 references
The author proves that if \(f:\mathbb{R} \to \mathbb{R}\) is a continuous and differentiable at zero solution of the functional inequality \(f(x+y)+f(xy) \geq f(x)+f(y) +f(x)f(y)\), \(x,y \in \mathbb{R}\), then \(f(x)=0\) or \(f(x)=x+((a-1)/a) (e^{ax}-1)\) for an \(a \geq 1\).
0 references
differentiable solution
0 references
functional inequality
0 references