A remark about the Galois module structure in ray class fields over imaginary quadratic number fields (Q1801581)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A remark about the Galois module structure in ray class fields over imaginary quadratic number fields |
scientific article; zbMATH DE number 205454
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A remark about the Galois module structure in ray class fields over imaginary quadratic number fields |
scientific article; zbMATH DE number 205454 |
Statements
A remark about the Galois module structure in ray class fields over imaginary quadratic number fields (English)
0 references
31 August 1993
0 references
Let \(K\) be a quadratic imaginary number field of discriminant \(-8\), \(- 11\), \(-19\), \(-43\), \(-67\) or \(-163\), and for a prime ideal \({\mathfrak p}\) in \(L\) let \(K({\mathfrak p})\) be the ray class field of conductor \({\mathfrak p}\) over \(K\). It is shown for an infinite number of prime ideals \({\mathfrak p}\), that the tame extension \(K({\mathfrak p})/K\) has no normal integral basis.
0 references
Galois module structure
0 references
imaginary quadratic field
0 references
ray class field
0 references
tame extension
0 references
normal integral basis
0 references