A remark about the Galois module structure in ray class fields over imaginary quadratic number fields (Q1801581)

From MaRDI portal





scientific article; zbMATH DE number 205454
Language Label Description Also known as
English
A remark about the Galois module structure in ray class fields over imaginary quadratic number fields
scientific article; zbMATH DE number 205454

    Statements

    A remark about the Galois module structure in ray class fields over imaginary quadratic number fields (English)
    0 references
    31 August 1993
    0 references
    Let \(K\) be a quadratic imaginary number field of discriminant \(-8\), \(- 11\), \(-19\), \(-43\), \(-67\) or \(-163\), and for a prime ideal \({\mathfrak p}\) in \(L\) let \(K({\mathfrak p})\) be the ray class field of conductor \({\mathfrak p}\) over \(K\). It is shown for an infinite number of prime ideals \({\mathfrak p}\), that the tame extension \(K({\mathfrak p})/K\) has no normal integral basis.
    0 references
    0 references
    Galois module structure
    0 references
    imaginary quadratic field
    0 references
    ray class field
    0 references
    tame extension
    0 references
    normal integral basis
    0 references

    Identifiers