An oscillation criterion for second order nonlinear differential equations with iterated integral averages (Q1802864)

From MaRDI portal





scientific article; zbMATH DE number 219696
Language Label Description Also known as
English
An oscillation criterion for second order nonlinear differential equations with iterated integral averages
scientific article; zbMATH DE number 219696

    Statements

    An oscillation criterion for second order nonlinear differential equations with iterated integral averages (English)
    0 references
    0 references
    29 June 1993
    0 references
    The equation (1) \(y''+a(t)f(y)=0\), \(t\in[0,\infty)\), where \(a(t)\in C[0,\infty)\), \(f(y)\in C^ 1(-\infty,\infty)\), \(f'(y)\geq 0\) for all \(y\), \(yf(y)>0\) for \(y\neq 0\), has an oscillatory solution if \(f(y)\) satisfies either the superlinear conditions \(0<\int^ \varepsilon_ 0{dy\over f(y)}\), \(\int^ 0_{-\varepsilon}{dy\over f(y)}<\infty\) for all \(\varepsilon>0\) and \(f'(y)\int^ y_ 0{dv\over f(v)}\geq c^{-1}>0\) for all \(y\), or sublinear conditions \(0\leq\int^ \infty_ \varepsilon{dy\over f(y)}\), \(\int^{-\varepsilon}_{-\infty}{dy\over f(y)}<\infty\) for all \(\varepsilon>0\) and \(f'(y)\int^ \infty_ y{dv\over f(v)}\geq d>1\) for all \(y\), and moreover \[ \lim_{T\to\infty}\sup{1\over T^ n}\int^ T_ 0(T-t)^ na(t)dt=\infty \] and \[ \lim_{T\to\infty}\inf{1\over T^ p}\int^ \infty_ 0(T-t)^ pa(t)dt=-\lambda>-\infty,\quad \lambda>0,\;p>1. \] Then the equation (1) has an oscillatory solution.
    0 references
    oscillatory solution
    0 references
    superlinear conditions
    0 references
    sublinear conditions
    0 references

    Identifiers