Correction to ``Unbounded quadrature domains in \({\mathbb{R}}^ n\) \((n{\geq{}}3)\)'' (Q1803643)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Correction to ``Unbounded quadrature domains in \({\mathbb{R}}^ n\) \((n{\geq{}}3)\) |
scientific article; zbMATH DE number 221313
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Correction to ``Unbounded quadrature domains in \({\mathbb{R}}^ n\) \((n{\geq{}}3)\)'' |
scientific article; zbMATH DE number 221313 |
Statements
Correction to ``Unbounded quadrature domains in \({\mathbb{R}}^ n\) \((n{\geq{}}3)\)'' (English)
0 references
29 June 1993
0 references
The statement in Lemma 1.5 in the author's paper [J. Anal. Math. 56, 281- 291 (1991; Zbl 0745.31003)] is not true. In fact, the function \(g(t)=t^ n\log^{-2}(t)\) is a counterexample to Lemma 1.5. The incorrect proof given there depends on the wrong assertion that \(\int^ \infty_{r'}(t\log^ nt)^{-1}dt\) is divergent for \(n\geq 2\). To save Theorem 1.4 we have to change the statement of Lemma 1.1. Namely, part (b) of Lemma 1.1 should read \[ |\nabla u(y)|\leq C\bigl[1+| y-\xi|\log\bigl({|\xi|\over| y- \xi|}\bigr)\bigr], \] where \(\xi\) is any point on \(\partial\Omega\).
0 references
0.9152481
0 references
0.87622565
0 references
0.8683914
0 references
0.86075425
0 references
0.85498667
0 references
0.85267746
0 references