Relations among Chern-Simons-Witten-Jones invariants (Q1804887)

From MaRDI portal





scientific article; zbMATH DE number 751240
Language Label Description Also known as
English
Relations among Chern-Simons-Witten-Jones invariants
scientific article; zbMATH DE number 751240

    Statements

    Relations among Chern-Simons-Witten-Jones invariants (English)
    0 references
    10 April 1997
    0 references
    The main results of the paper are: Theorem 1.1. \[ \begin{aligned} \Theta_2(M,A) &= 2^\nu \Bigl(\sum_{s<l} A^{s.s}\Bigr) {{(1-A)^{b_+} (1+A)^{b_-}} \over {2^{b_++b_-}}},\\ \Theta_6(M,A) &= \Bigl(\sum_{s<l} (-A^3)^{s.s}\Bigr) {{(1+A^3)^{b_+} (1-A^3)^{b_-}} \over {2^{b_++b_-}}}, \end{aligned} \] where \(s<l\) means that \(s\) is a sublink of \(l\), and \(s.s\) is the linking number of \(s\) with the convention \(\varphi\cdot \varphi=0\) for empty link \(\varphi\), \(A\) is any primitive \(4r\)th root of unity, \(M\) is a 3-manifold. Theorem 2.1. \(\Theta_2(M,A)\) with \(A=\pm i\), and \(\Theta_6(M,A)\) with \(A=\pm e({1\over12})\) or \(\pm e({5\over12})\) are all Gaussian integers, i.e. elements in \(\mathbb{Z}[i]\). Theorem 4.1. Let \(r\geq 3\) be odd, then \[ \Theta_{2r}(M,A)= \Theta_6 \bigl(M,\mp e({\textstyle {1\over12}})\bigr) \Theta_r(M,\mp iA), \quad\text{for }A\in s^\pm. \] Theorem 5.1. \[ \begin{alignedat}{2} \xi_r(M,A) &= 4^\nu \Theta_{r/2} (M,-A), &\quad&\text{if }4<r\equiv 0\pmod 4;\\ \xi_r(M,A) &= 2^\nu \Theta_r(M,-A), &\quad&\text{if }1<r\equiv 1\pmod 2.\end{alignedat} \] {}.
    0 references
    0 references
    Chern-Simons-Witten-Jones invariants
    0 references
    non-homotopy invariance
    0 references
    Brown invariant
    0 references
    3-manifold
    0 references
    0 references

    Identifiers