A Hilbert space of harmonic functions (Q1805025)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Hilbert space of harmonic functions |
scientific article; zbMATH DE number 751381
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Hilbert space of harmonic functions |
scientific article; zbMATH DE number 751381 |
Statements
A Hilbert space of harmonic functions (English)
0 references
11 June 1995
0 references
Let \(\widetilde M\) denote the complex light cone \(\{z \in \mathbb{C}^{n + 1} : z^2_1 + z^2_2 + \cdots + z^n_{n + 1} = 0\}\) and let \(M = \{z = x + iy \in \widetilde M : |x |= 1/2\}\). A Hilbert space of harmonic functions is constructed on \(\mathbb{R}^{n + 1}\) which is shown to be unitarily isomorphic to a subspace of \(L^2 (M)\) under the Fourier transform.
0 references
Fourier transformation
0 references
harmonic function of several variables
0 references
germs of holomorphic functions
0 references
0.9711643
0 references
0 references
0 references
0.93806416
0 references
0 references
0.92189443
0 references
0 references
0 references