A Hilbert space of harmonic functions (Q1805025)

From MaRDI portal





scientific article; zbMATH DE number 751381
Language Label Description Also known as
English
A Hilbert space of harmonic functions
scientific article; zbMATH DE number 751381

    Statements

    A Hilbert space of harmonic functions (English)
    0 references
    0 references
    11 June 1995
    0 references
    Let \(\widetilde M\) denote the complex light cone \(\{z \in \mathbb{C}^{n + 1} : z^2_1 + z^2_2 + \cdots + z^n_{n + 1} = 0\}\) and let \(M = \{z = x + iy \in \widetilde M : |x |= 1/2\}\). A Hilbert space of harmonic functions is constructed on \(\mathbb{R}^{n + 1}\) which is shown to be unitarily isomorphic to a subspace of \(L^2 (M)\) under the Fourier transform.
    0 references
    Fourier transformation
    0 references
    harmonic function of several variables
    0 references
    germs of holomorphic functions
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references