The Bloch-Grüneisen integrals. Some analytic expressions (Q1805910)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Bloch-Grüneisen integrals. Some analytic expressions |
scientific article; zbMATH DE number 1355517
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Bloch-Grüneisen integrals. Some analytic expressions |
scientific article; zbMATH DE number 1355517 |
Statements
The Bloch-Grüneisen integrals. Some analytic expressions (English)
0 references
7 September 2000
0 references
The authors give analytic expressions of the Bloch-Grüneisen integrals \(I_n(x)\) [\textit{M. Deutsch}, J. Phys. A: Math. Gen. 20, L811--L813 (1987)] and of similar integrals \(K_n(x)\) defined by \[ I_n(x)= \int^x_0 {t^ne^t \over(e^t-1)^2} dt;\quad K_n(x)= \int^x_0 {t^ne^t\over e^{2t}-1} dt. \] The result include the power series expansion in terms of Bernoulli numbers and an expression as a finite sum of polylogarithms. The numerical accuracy of the formulas is discussed in detail.
0 references
Bloch-Grüneisen integrals
0 references
Bernoulli numbers
0 references
polylogarithms
0 references