A note on traces of differential forms (Q1805919)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on traces of differential forms |
scientific article; zbMATH DE number 1355525
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on traces of differential forms |
scientific article; zbMATH DE number 1355525 |
Statements
A note on traces of differential forms (English)
0 references
29 June 2000
0 references
Soient \(k\subset A\subset B\) des extensions d'anneaux intègres, \(F\) le corps des fractions de \(A\) et \(L\) le corps des fractions de \(B\). On suppose que \(A\) est integralement clôs et \(L\) est une extension finie et séparable de \(F\). Alors on a un isomorphism canonique \(\Omega_{F/K} \bigotimes_F L\approx\Omega_{L/k}\). On note \(\Omega^i_{A/k} =\bigwedge^i_A \Omega_{A/k}\), \(c_A:\Omega^i_{A/k} \to\Omega^i_{F/k}\) l'application canonique et \[ T:\Omega^i_{L/k} \to\Omega^i_{F/k}\approx \Omega^i_{A/k} \otimes_AF,\quad T(e)= \sum f_j\text{Tr}^L_F(l_j), \] où \(e=\sum f_jl_j \in\Omega^i_{L/k}\), \(f_j\in \Omega^i_{F/k}\) et \(l_j\in L\). L'A. démontre que \(T(c_B(\Omega^i_{B/k})) \subset c_A(\Omega^i_{A/k})\) et donne une application géométrique de cette relation.
0 references
differential forms
0 references