Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation (Q1806042)

From MaRDI portal





scientific article; zbMATH DE number 1356236
Language Label Description Also known as
English
Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation
scientific article; zbMATH DE number 1356236

    Statements

    Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation (English)
    0 references
    0 references
    20 December 1999
    0 references
    The author studies the eigenvalues of the Dirac operator on a two-dimensional sphere equipped with a Riemannian metric that is invariant under a free circle action. Let \(f_{\max}\) be the maximal length of an orbit. Then she proves the theorem: Any eigenvalue \(\lambda\) of the Dirac operator satisfies \(|\lambda |\geq {1\over 2 f_{\max}}\). The multiplicity of an eigenvalue \(\lambda_n\), \(n>0\) with \({2n-1\over 2f_{\max}}\leq \lambda_n \leq {2n+1\over 2f_{\max}}\) is at most \(2n\).
    0 references
    0 references
    Dirac operator
    0 references
    spectrum
    0 references
    surface of rotation
    0 references
    eigenvalue
    0 references

    Identifiers