Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation (Q1806042)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation |
scientific article; zbMATH DE number 1356236
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation |
scientific article; zbMATH DE number 1356236 |
Statements
Lower bounds for eigenvalues of the Dirac operator on surfaces of rotation (English)
0 references
20 December 1999
0 references
The author studies the eigenvalues of the Dirac operator on a two-dimensional sphere equipped with a Riemannian metric that is invariant under a free circle action. Let \(f_{\max}\) be the maximal length of an orbit. Then she proves the theorem: Any eigenvalue \(\lambda\) of the Dirac operator satisfies \(|\lambda |\geq {1\over 2 f_{\max}}\). The multiplicity of an eigenvalue \(\lambda_n\), \(n>0\) with \({2n-1\over 2f_{\max}}\leq \lambda_n \leq {2n+1\over 2f_{\max}}\) is at most \(2n\).
0 references
Dirac operator
0 references
spectrum
0 references
surface of rotation
0 references
eigenvalue
0 references
0 references
0 references