The Ahlfors map and Szegő kernel for an annulus (Q1806251)

From MaRDI portal





scientific article; zbMATH DE number 1356465
Language Label Description Also known as
English
The Ahlfors map and Szegő kernel for an annulus
scientific article; zbMATH DE number 1356465

    Statements

    The Ahlfors map and Szegő kernel for an annulus (English)
    0 references
    0 references
    0 references
    20 December 1999
    0 references
    Given a point \(a\) of an annulus \(\Omega := \{z\in \mathbb C: \rho <|z|<1\}\), let \(f_a\) be the Ahlfors map, i.e. a branched two-to-one analytic function mapping \(\Omega\) onto the unit disk, with \(f_a(a) = 0\). It is known that \(f_a = {S_a}/{L_a}\), where \(S_a = \frac 1{2\pi} \sum_{n=-\infty}^{\infty} \frac{(z\bar a)^n}{1+{\rho}^{2n+1}}\) is the Szegő kernel, and \(L_a = \frac 1{2\pi}\frac 1{z-a} +\frac 1{2\pi}\sum_{n=o}^{\infty} \frac {{\rho}^{2n+1}(z^{2n+1}-a^{2n+1})}{(za)^{n+1}(1+{\rho}^{2n+1})}\) the Garabedian kernel. First the authors show that \(a\) and \(-\rho/\bar a\) are the only points at which the function \(f_a\) vanishes. Next they find representations for the Szegő and Garabedian kernels in terms of integral formulas whose singularities are at points lying strictly outside of \(\Omega\). This permits to numerically compute these kernels and hence the Ahlfors map.
    0 references
    Szegő kernel
    0 references
    Ahlfors map
    0 references
    0 references

    Identifiers