Widths and average widths of Sobolev classes (Q1809879)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Widths and average widths of Sobolev classes |
scientific article; zbMATH DE number 1931035
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Widths and average widths of Sobolev classes |
scientific article; zbMATH DE number 1931035 |
Statements
Widths and average widths of Sobolev classes (English)
0 references
19 June 2003
0 references
Let \(W^r_{\overline p}(I^d)\) be the unit ball in the isotropic Sobolev space defined over the mixed \(L_{\overline p}= L_{p_1,\dots, p_d}\) space on \(\mathbb{R}^d\) or \(d\)-dimensional torus \(T^d\). The authors generalize the well-known results of the width of a different kind over \(L_p(I^d)\), \(1\leq p\leq\infty\), to the case of \(W^r_{\overline p}(I^d)\).
0 references
multivariate function
0 references
Sobolev spaces
0 references
width
0 references
average width
0 references
0.9744102
0 references
0.97360253
0 references
0 references
0.95663464
0 references
0.9561203
0 references
0.94397086
0 references
0.93854046
0 references