On the critical Neumann problem with weight in exterior domains. (Q1811792)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the critical Neumann problem with weight in exterior domains. |
scientific article; zbMATH DE number 1929513
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the critical Neumann problem with weight in exterior domains. |
scientific article; zbMATH DE number 1929513 |
Statements
On the critical Neumann problem with weight in exterior domains. (English)
0 references
17 June 2003
0 references
Let \(\Omega\subset\mathbb R^n\) be a bounded domain with a smooth boundary \(\partial\Omega\) and set \(\Omega^c=\mathbb R^N\setminus \overline{\Omega}\). Here, the authors study the nonlinear Neumann problem \[ -\Delta u+\lambda u= Q(x)|u|^{2^*-2}u \quad\text{in }\Omega^c,\quad u>0, \qquad \frac{\partial u}{\partial\nu}=0 \quad\text{on }\partial\Omega, \] where the coefficient \(Q\) is continuous and positive on \(\overline{\Omega}^c\), \(\lambda>0\) is a parameter and \(2^*= \frac {2N}{N-2}\), \(N\) is a critical Sobolev exponent. The authors study the common effect of the mean curvature for the boundary \(\partial\Omega\) and the shape of the graph of the coefficient \(Q\) on the existence of least energy solutions.
0 references
Neumann problem
0 references
exterior domains
0 references
critical Sobolev exponent
0 references
least energy
0 references
solutions
0 references
optimal Sobolev inequalities
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9295385
0 references
0.9203682
0 references
0.91925925
0 references
0.90808296
0 references
0 references
0 references