Tight Lagrangian submanifolds in \({\mathbb{C}}P^ n\) (Q1812966)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Tight Lagrangian submanifolds in \({\mathbb{C}}P^ n\) |
scientific article; zbMATH DE number 1117
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Tight Lagrangian submanifolds in \({\mathbb{C}}P^ n\) |
scientific article; zbMATH DE number 1117 |
Statements
Tight Lagrangian submanifolds in \({\mathbb{C}}P^ n\) (English)
0 references
25 June 1992
0 references
We introduce the notion of the (Lagrangian) tightness of Lagrangian submanifolds in Hermitian symmetrix spaces and prove that for \({\mathbb{C}}P^ n\), the standard totally geodesic embeddings of \({\mathbb{R}}P^ n\) into \({\mathbb{C}}P^ n\) are the only tight Lagrangian submanifolds if \(n\geq 2\) and the lattitude circles are the only ones if \(n=1\).
0 references
tightness
0 references
Lagrangian submanifolds
0 references
Hermitian symmetrix spaces
0 references
totally geodesic embeddings
0 references
0 references
0.9314706
0 references
0.9289249
0 references
0 references
0.9199705
0 references
0.9107674
0 references
0.9068978
0 references
0 references
0.9058996
0 references