Solutions positives et mesure harmonique pour des operateurs paraboliques dans des ouverts ``Lipschitziens''. (Positive solutions and harmonic measure for parabolic operators in ``Lipschitz'' domains) (Q1812970)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Solutions positives et mesure harmonique pour des operateurs paraboliques dans des ouverts ``Lipschitziens. (Positive solutions and harmonic measure for parabolic operators in ``Lipschitz domains) |
scientific article; zbMATH DE number 1140
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Solutions positives et mesure harmonique pour des operateurs paraboliques dans des ouverts ``Lipschitziens''. (Positive solutions and harmonic measure for parabolic operators in ``Lipschitz'' domains) |
scientific article; zbMATH DE number 1140 |
Statements
Solutions positives et mesure harmonique pour des operateurs paraboliques dans des ouverts ``Lipschitziens''. (Positive solutions and harmonic measure for parabolic operators in ``Lipschitz'' domains) (English)
0 references
25 June 1992
0 references
Let L be a parabolic operator on \({\mathbb{R}}^{n+1}\) written in divergence form and with Lipschitz coefficients relatively to an adapted metric. We compare, near the boundary, the relative behavior of positive L-solutions on a Lipschitz domain. We first establish a so-called weak boundary Harnack principle. We then establish a uniform Harnack principle for certain particular positive L-solutions. This principle then allows us to prove another strong boundary Harnack principle for certain pairs of positive L-solutions. Then, we can generalize to L-operators some of J. T. Kemper results: we characterize the Martin boundary for ``Lipschitz'' domains and we show that the positive L-solutions on such domains admit non tangential limits except for a negligible set with respect to harmonic measure. Finally, in the last part, and for slightly more regular domains, we establish the equivalence between harmonic measure, adjoint harmonic measure and surface measure thus developing some results of J. M. Wu and R. Kaufman.
0 references
Lipschitz domain
0 references
Harnack principle
0 references
Martin boundary
0 references
positive L- solutions
0 references
non tangential limits
0 references
0 references
0 references
0 references
0 references
0 references