Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^ m_ 2\) (Q1813363)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^ m_ 2\) |
scientific article; zbMATH DE number 6180
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^ m_ 2\) |
scientific article; zbMATH DE number 6180 |
Statements
Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^ m_ 2\) (English)
0 references
25 June 1992
0 references
Making use of precise inequalities of Kolmogorov type for periodic functions, the author estimates the exact constant \(C_{m,k}(\Delta_ n)\) in the inequality \[ \| f^{(k)}-S^{(k)}_{n,2m-1}\|_ \infty\leq C_{m,k}(\Delta_ n)\|\Delta_ n\|^{m-k-1/2}\| f^{(m)}\|_ 2 \] (here \(S_{n,2m-1}=S_{n,2m-1}(f,\Delta_ n)\) is a periodic polynomial spline of degree \(2m-1\) and \(\Delta_ n=\{0=t_ 0<t_ 1<\cdots<t_ n=2\pi\}\) is a partitioning of the interval \([0,2\pi])\). The mentioned result is used to derive estimates of the quantity \[ \ell^{(k)}_{n,2m-1}(W^ \mu_ 2)_ \infty=\sup_{f\in W^ \mu_ 2}\| f^{(k)}-S^{(k)}_{n,2m-1}\|_ \infty \] in the case of a uniform partitioning \(\Delta_ n=\delta_ n=\{2\pi i/n\}^ n_{i=0}\).
0 references
spline interpolation
0 references
periodic classes \(W^ m_ 2\)
0 references
inequalities of Kolmogorov type
0 references
periodic functions
0 references
periodic polynomial spline
0 references
0.89675206
0 references
0.89259446
0 references
0.88826555
0 references
0.88534534
0 references
0.8834535
0 references
0.8825766
0 references
0.8820576
0 references