On the local Kronecker-Weber theorem (Q1813642)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the local Kronecker-Weber theorem |
scientific article; zbMATH DE number 4731
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the local Kronecker-Weber theorem |
scientific article; zbMATH DE number 4731 |
Statements
On the local Kronecker-Weber theorem (English)
0 references
25 June 1992
0 references
Without using local class field theory, the author proves the local Kronecker-Weber theorem, that is, \(K\subset k_{ur}k_ \pi\) for any abelian extension \(K/k\) of a local field \(k\), where \(k_{ur}\) is the join of unramified extensions of \(k\), \(k_ \pi\) the field obtained by adjoining to \(k\) the roots of any composition \(f\circ f\circ\cdots\circ f\) of \(f=x^ q+\pi x\), \(\pi\) any prime element of \(k\), \(q=\#k\pmod \pi\). Properties of Galois cohomology are used.
0 references
local field
0 references
abelian extension
0 references
unramified extensions
0 references
Galois cohomology
0 references