Approximation of the function \([x]^ r\) and its derivatives (Q1813758)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Approximation of the function \([x]^ r\) and its derivatives |
scientific article; zbMATH DE number 5012
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Approximation of the function \([x]^ r\) and its derivatives |
scientific article; zbMATH DE number 5012 |
Statements
Approximation of the function \([x]^ r\) and its derivatives (English)
0 references
25 June 1992
0 references
Die Autoren geben eine Methode zur effektiven Polynom-Approximation der Funktion \(f(x)=| x|^ r\text{sign}(x)\) auf dem Intervall \([- 1,1]\) an, wobei der Abstand in der Supremum-Norm gemessen wird. Mit Hilfe von expliziten [\textit{V. K. Dzyadyk}, Tr. Mat. Inst., Akad. Nauk SSSR 172, 140-154 (1985; Zbl 0581.41011)] ungeraden Polynomen \(y_{2n+1}(\cdot)\) leiten sie die für \(0\leq x\leq 1\) gültige Identität (\(T_ n(\cdot)\) steht für das \(n\)-te Chebyshev-Polynom 1. Art) \[ x^ r- y_{2n+1}(x)=\tau'\left\{ T_{2n+1}(x)-2r x^ r\int_ x^ 1 {{T_{2n+1}(s)} \over {s^{r-1}}}ds\right\} \] her mit einem expliziten \(\tau'=\tau'(nr,)\). Da \(\{\dots\}\) hinreichend oft oszilliert, folgt (nach de la Valleé-Poisson) \[ {{C_ 1(r)}\over {n^ r}} \leq E_{2n+1}(| x|^ r\text{ sign}(x))\leq {{C_ 2(r)} \over {n^ r}} \] mit effectiven \(C_ j(r)\).
0 references
Chebyshev polynomial
0 references
0.9301293
0 references
0.9212466
0 references
0 references
0.9018818
0 references