Remarks on Auslander algebras (Q1814225)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Remarks on Auslander algebras |
scientific article; zbMATH DE number 10340
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Remarks on Auslander algebras |
scientific article; zbMATH DE number 10340 |
Statements
Remarks on Auslander algebras (English)
0 references
25 June 1992
0 references
This paper is a continuation of \textit{K. Igusa, M.-I. Platzeck} and the authors [Commun. Algebra 15, 377-424 (1987; Zbl 0609.16014)]. It consists essentially of facts concerning the Auslander algebra of a standard Artin algebra, in case the former is representation finite. Sample results: Proposition. If the Auslander algebra of the standard algebra \(\Lambda\) is representation finite, then \(\Lambda\) is a zero- relations algebra. Proposition. If the Auslander algebra of the standard algebra \(\Lambda\) is representation finite, then for any indecomposable \(\Lambda\)-module \(M\), if \(\alpha_ L(M) = 1\), \(d({\mathbf P}_ 0,M) \leq 4\), and, if \(\alpha_ L(M) = 2\), \(d({\mathbf P}_ 0,M) \leq 3\). Here \(\alpha_ L(M)\) is the number of indecomposable summands in the middle of an Auslander-Reiten sequence ending up at \(M\), \({\mathbf P}_ 0\) is the set of projective indecomposables and \(d({\mathbf P}_ 0,M)\) is the distance from \({\mathbf P}_ 0\) to \(M\) in the Auslander-Reiten quiver.
0 references
Auslander algebra
0 references
standard Artin algebra
0 references
zero-relations algebra
0 references
representation finite
0 references
indecomposable summands
0 references
Auslander-Reiten sequence
0 references
projective indecomposables
0 references
Auslander-Reiten quiver
0 references