On the regularity of generalized solutions of quasilinear degenerate parabolic systems of second order (Q1814540)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the regularity of generalized solutions of quasilinear degenerate parabolic systems of second order |
scientific article; zbMATH DE number 10928
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the regularity of generalized solutions of quasilinear degenerate parabolic systems of second order |
scientific article; zbMATH DE number 10928 |
Statements
On the regularity of generalized solutions of quasilinear degenerate parabolic systems of second order (English)
0 references
25 June 1992
0 references
The author proves the boundedness and Hölder continuity of generalized solutions for second order quasilinear degenerate parabolic systems of the form \[ \partial u^ i/\partial t-\partial/\partial x_ \alpha(| u|^{2\sigma} a^{\alpha\beta}(x,t,u,\nabla u)\partial u^ i/\partial x_ \beta)+b_ i(x,t,u,\nabla u)=0, \] where \(\sigma>0\), \(\gamma|\xi|^ 2\leq a^{\alpha\beta}(x,t,u,\nabla u)\xi_ \alpha \xi_ \beta\leq\mu|\xi|^ 2\), \(\nu,\mu>0\), \(x=(x_ 1,\ldots,x_ n)\), \(u=(u^ 1,\ldots,u^ N)\), \(\nabla u=(u^ i_ \alpha)_{i=1,\ldots,N; \alpha=1,\ldots,n}\), \(u^ i_ \alpha=\partial u^ i/\partial x_ \alpha\), \((x,t)\in Q_ T=\Omega\times(0,T)\), \(\Omega\subset R^ n\), \(n\geq 1\), \(N\geq 1\), \(T>0\).
0 references
boundedness
0 references
Hölder continuity
0 references