A nonlocal nonlinear boundary value problem for the heat equations (Q1814868)

From MaRDI portal





scientific article; zbMATH DE number 940907
Language Label Description Also known as
English
A nonlocal nonlinear boundary value problem for the heat equations
scientific article; zbMATH DE number 940907

    Statements

    A nonlocal nonlinear boundary value problem for the heat equations (English)
    0 references
    0 references
    26 May 1997
    0 references
    Let \(\Omega\subset\mathbb{R}^n\) (\(n=2\) or 3) be a bounded smooth domain with boundary \(\partial\Omega=\Gamma_1\cup\Gamma_2\), where \(\Gamma_1\cap\Gamma_2=\emptyset\). We consider the following mixed initial-boundary value problem for the heat equation: \[ u'-\Delta u=0\quad\text{in }\Omega\times(0,T), \] \[ u=0\quad\text{in }\Gamma_1\times(0,T),\;u=H\Biggl(\int_{\Gamma_2}{\partial u\over\partial\nu} dS\Biggr)\quad\text{on }\Gamma_2\times(0,T),\;u(0)=u^0\quad\text{on }\Omega\times\{0\}, \] where \(H:{\mathcal D}_H\subset\mathbb{R}\to\mathbb{R}\) is a strictly decreasing surjective function, \(H^{-1}\) grows linearly, and \(\nu\) stands for the outward unit normal vector at the boundary. We use the Galerkin method to prove the following existence and uniqueness result. Theorem. For any fixed initial data \(u^0\in L^2(\Omega)\), there exists a unique weak solution \[ u\in L^2(0,T;V)\cap W^{1,2}(0,T;V')\subset C(0,T;L^2(\Omega)), \] where \(V=\{v\in H^1(\Omega)\mid v|_{\Gamma_1}=0\), \(v|_{\Gamma_2}=\) constant (depending on \(v\))\}, and \(V'\) stands for the dual of \(V\).
    0 references
    mixed boundary conditions
    0 references
    Galerkin method
    0 references
    unique weak solution
    0 references

    Identifiers