Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semiclassical limit (Q1815438)

From MaRDI portal





scientific article; zbMATH DE number 944333
Language Label Description Also known as
English
Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semiclassical limit
scientific article; zbMATH DE number 944333

    Statements

    Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semiclassical limit (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    12 December 1996
    0 references
    The authors give here the semiclassical spectral asymptotics for the counting function of the Dirac operator \[ D:=\alpha\cdot(\hslash/i)\nabla+\beta+V, \] and the Schrödinger operator \[ S:=-\hslash^2\Delta+W. \] Here \(\alpha:=(\alpha_1,\alpha_2,\alpha_3)\) and \(\beta\) are the Dirac matrices acting on \([{C}^\infty_0({\mathbb{R}}^3)]^4\), and the counting function gives the number of all the eigenvalues in the spectral gap. They prove basic Lemmas by using the normalized coherent states \(F^0_\gamma(x)\), \(F^U_\gamma(x)\) and the measure \(d\Omega(\gamma)\); \[ \gamma:=({p},{q},\mu)\in{\mathbb{R}}^3\times{\mathbb{R}}^3\times\{1,2,3,4\}. \] Next, they prove a convergence theorem for the sum \(\sum_\nu\sum_{\sigma=1}^4|\psi_\nu(x,\sigma)|^2\), where \(\psi_\nu\); are the eigenfunctions of \(D^2-1+W\) with negative eigenvalues. Their main theorem is the following: Assume that \(V\in{L}^{3/2}({\mathbb{R}}^3)\cap{L}^3({\mathbb{R}}^3)\) and \(W\in {L}^{3/2}({\mathbb{R}}^3)\). Then \[ \begin{multlined}\text{tr }\chi_{(-\infty,0)}(D^2-1+W)=\\ (1/(2\pi\hslash)^3)\int \text{tr }\chi_{(-\infty,0)} [{p}^2+W+V({q})^2+2V({q}) ({p}\cdot\alpha+\beta)]dp dq+o(\hslash^{-3}),\text{ as }\hslash\to 0.\end{multlined} \] A corollary gives \(\text{tr }\chi_{(-1,1)}(D)\) and \(N(S):=\text{tr}[\chi_{(-\infty,0)}(S)]\).
    0 references
    semiclassical spectral asymptotics
    0 references
    Dirac operator
    0 references
    Schrödinger operator
    0 references
    counting function
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references