Construction of the Green function on a Riemannian manifold using harmonic coordinates (Q1816603)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Construction of the Green function on a Riemannian manifold using harmonic coordinates |
scientific article; zbMATH DE number 950576
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Construction of the Green function on a Riemannian manifold using harmonic coordinates |
scientific article; zbMATH DE number 950576 |
Statements
Construction of the Green function on a Riemannian manifold using harmonic coordinates (English)
0 references
14 August 1997
0 references
Let \((M,g)\) be a compact Riemannian manifold of dimension \(n\geq 3\) without boundary. If \(\nabla\), resp. \(\Delta\), denote the Levi-Civita connection of \((M,g)\), resp. the Laplace operator, the author proves the estimate \(|\nabla^2 u|_p\leq C|\Delta u|_p\), where \(C\) depends on the geometric data of \((M,g)\). This \(L^p\)-estimate is derived via a Calderon-Zygmund type inequality. In the main result of the paper it is estimated the constant \(C\) in terms of the diameter, the injectivity radius and the lower bound of the Ricci tensor. For this aim the author constructs a parametrix of the Green function by using harmonic coordinates.
0 references
\(L^ p\)-estimates
0 references
Levi-Civita connection
0 references
Laplace operator
0 references
Ricci tensor
0 references
Green function
0 references
0.91202605
0 references
0.89882606
0 references
0.8955024
0 references
0.89167166
0 references
0.88592255
0 references
0.88394094
0 references
0.8815187
0 references
0.8813393
0 references