Une généralisation de théorème de Myers-Steenrod aux pseudogroupes d'isométries. (A generalization of the Myers-Steenrod theorem to pseudogroups of local isometries) (Q1819453)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Une généralisation de théorème de Myers-Steenrod aux pseudogroupes d'isométries. (A generalization of the Myers-Steenrod theorem to pseudogroups of local isometries) |
scientific article; zbMATH DE number 3992507
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Une généralisation de théorème de Myers-Steenrod aux pseudogroupes d'isométries. (A generalization of the Myers-Steenrod theorem to pseudogroups of local isometries) |
scientific article; zbMATH DE number 3992507 |
Statements
Une généralisation de théorème de Myers-Steenrod aux pseudogroupes d'isométries. (A generalization of the Myers-Steenrod theorem to pseudogroups of local isometries) (English)
0 references
1988
0 references
We show that every pseudogroup of local isometries on a Riemannian manifold, which is complete and closed for the \(C^ 1\)-topology is a Lie pseudogroup. This result is a generalization of the well-known theorem of S. Myers and N. Steenrod according to which the group of isometries of a Riemann manifold is a Lie group.
0 references
pseudogroups of local isometries
0 references
Lie pseudogroups
0 references
0.84845287
0 references
0.83483636
0 references
0.81944793
0 references
0.8194071
0 references
0.81918675
0 references