On coprime integral solutions of \(y^ 2=x^ 3+k\) (Q1820194)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On coprime integral solutions of \(y^ 2=x^ 3+k\) |
scientific article; zbMATH DE number 3993680
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On coprime integral solutions of \(y^ 2=x^ 3+k\) |
scientific article; zbMATH DE number 3993680 |
Statements
On coprime integral solutions of \(y^ 2=x^ 3+k\) (English)
0 references
1987
0 references
Let N'(k) (k\(\in {\mathbb{Z}})\) denote the number of coprime integral solutions of the diophantine equation \((*)\quad y^ 2=x^ 3+k.\) Then it is shown that \(\limsup_{k\to \infty}N'(k)\geq 20\) by exhibiting a (very large) k and twenty coprime solutions of (*). This extends results of \textit{N. M. Stephens} [Proc. Am. Math. Soc. 48, 325-327 (1975; Zbl 0303.10013)] and \textit{S. P. Mohanty} and \textit{A. M. S. Ramasamy} [J. Number Theory 17, 323-326 (1983; Zbl 0522.10010)]. Also an example is given of consecutive solutions of (*), i.e. integral solutions \((x_ i,y_ i)\), \(i=1,2,3\), with \(y_ 1-y_ 2=y_ 2-y_ 3=1\), which answers a question raised by \textit{S. P. Mohanty} [Proc. Am. Math. Soc. 48, 281-285 (1975; Zbl 0303.10012)].
0 references
elliptic curve
0 references
cubic diophantine equation
0 references
number of coprime integral solutions
0 references
consecutive solutions
0 references