The exponential integral distribution (Q1820494)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The exponential integral distribution |
scientific article; zbMATH DE number 3996740
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The exponential integral distribution |
scientific article; zbMATH DE number 3996740 |
Statements
The exponential integral distribution (English)
0 references
1987
0 references
For a positive integer n let \(E_ n^{(0)}(x)=\exp (-x)\) and \[ E_ n^{(m+1)}(x)=x^{n-1}\int^{\infty}_{x}E_ n^{(m)}(t)t^{- n}dt\quad for\quad m=0,1,2,.... \] The exponential integral distribution with parameters m, n and \(\nu\) \((>0)\) is then described by the probability density function \[ f(x)=(n+\nu -1)^ mx^{\nu -1}E_ n^{(m)}(x)/\Gamma (\nu),\quad for\quad x>0. \] Expressions for the moments and the cumulative distribution function are given and physical relevance of this distribution is discussed. With \(m=0\), this reduces to a gamma distribution.
0 references
polylogarithms
0 references
exponential integral distribution
0 references
gamma distribution
0 references