Die Summe einer abelschen und einer nilpotenten Lie-Algebra ist auflösbar. (The sum of an abelian and a nilpotent Lie algebra is solvable) (Q1821185)

From MaRDI portal





scientific article; zbMATH DE number 3998048
Language Label Description Also known as
English
Die Summe einer abelschen und einer nilpotenten Lie-Algebra ist auflösbar. (The sum of an abelian and a nilpotent Lie algebra is solvable)
scientific article; zbMATH DE number 3998048

    Statements

    Die Summe einer abelschen und einer nilpotenten Lie-Algebra ist auflösbar. (The sum of an abelian and a nilpotent Lie algebra is solvable) (English)
    0 references
    0 references
    1987
    0 references
    It is known that a finite group is solvable if it can be written as the product of two nilpotent subgroups. For finite dimensional Lie algebras over a field of characteristic 0, the analogous result is valid [\textit{M. Goto}, J. Sci. Hiroshima Univ., Ser. A 1 26, 1-2 (1962; Zbl 0142.276)]. It is valid at characteristic \(p>0\), if one of the subalgebras is abelian of dimension less than \(p^ 2-p\) [\textit{A. I. Kostrikin}, Vestn. Mosk. Univ., Ser. I. 1982, No.2, 5-8 (1982; Zbl 0492.17006)]. The present paper shows that the condition on the dimension is not necessary for \(p\neq 2\).
    0 references
    solvability
    0 references
    sum of subalgebras
    0 references

    Identifiers