The pointwise rate of convergence of the kernel regression estimate (Q1821449)

From MaRDI portal





scientific article; zbMATH DE number 3998997
Language Label Description Also known as
English
The pointwise rate of convergence of the kernel regression estimate
scientific article; zbMATH DE number 3998997

    Statements

    The pointwise rate of convergence of the kernel regression estimate (English)
    0 references
    0 references
    0 references
    1987
    0 references
    Let \((X,Y),(X_ 1,Y_ 1),...,(X_ n,Y_ n)\) be independent, identically distributed random vectors from \({\mathbb{R}}^ d\times {\mathbb{R}}\), and \(E| Y|^ s<\infty\), \(s>1\). We study the rate of weak and strong convergence of Parzen kernel estimate of a regression function \(m(x)=E\{Y| X=x\}\). For Lipschitz(\(\alpha)\) m(x) and all distributions of X the weak rate is \(O(n^{-\alpha /(2\alpha +d)})\) provided that \(E| Y|^ s<\infty\), \(s\geq 2\), and the kernel has compact support. The rate is optimal in Stone's sense. Similarly for \(E| Y|^ s<\infty\), \(s>1\), the strong rate of convergence is \(O(n^{-\alpha (s-1)/s(2\alpha +d)}(\log n)^{1/2})\).
    0 references
    consistency
    0 references
    Parzen kernel estimate
    0 references
    regression function
    0 references
    strong rate of convergence
    0 references

    Identifiers