Interpolation and amalgamation properties in varieties of equivalential algebras (Q1821777)

From MaRDI portal





scientific article; zbMATH DE number 3999921
Language Label Description Also known as
English
Interpolation and amalgamation properties in varieties of equivalential algebras
scientific article; zbMATH DE number 3999921

    Statements

    Interpolation and amalgamation properties in varieties of equivalential algebras (English)
    0 references
    1986
    0 references
    Zucker and Renardel de Lavalette studied the interpolation property in fragments of intuitionistic propositional logic. The equivalential fragment of this logic determines a variety E, which can also be axiomatized by the following identities due to Kabziński and Wroński: \((a\leftrightarrow a)\leftrightarrow b=b\), \(a\leftrightarrow (a\leftrightarrow (b\leftrightarrow c))=(a\leftrightarrow b)\leftrightarrow (a\leftrightarrow c)\), ((a\(\leftrightarrow b)\leftrightarrow ((a\leftrightarrow c)\leftrightarrow c))\leftrightarrow ((a\leftrightarrow c)\leftrightarrow c)=a\leftrightarrow b\). The author proves that both the amalgamation and the interpolation property fail for E. It is also proved that the only nontrivial subvariety of E having both properties is the subvariety generated by a two-element chain.
    0 references
    equivalential algebra
    0 references
    intuitionistic logic
    0 references
    intermediate logic
    0 references
    logic fragment
    0 references
    amalgamation
    0 references
    interpolation
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references