On the (non)compactness of the radial Sobolev spaces (Q1822010)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the (non)compactness of the radial Sobolev spaces |
scientific article; zbMATH DE number 4000746
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the (non)compactness of the radial Sobolev spaces |
scientific article; zbMATH DE number 4000746 |
Statements
On the (non)compactness of the radial Sobolev spaces (English)
0 references
1986
0 references
The authors establish compactness and noncompactness results to the embedding operators from Sobolev spaces of functions in radial form to \(L^ p\)-spaces: We show that (i) \(H^ m_ r({\mathbb{R}}^ n)\hookrightarrow L^ p({\mathbb{R}}^ n)\) \((2<p<\frac{2n}{n-2m}\), \(n<2m)\) is compact (ii) \(H^ m_ r({\mathbb{R}}^ n)\hookrightarrow L^ p({\mathbb{R}}^ n)\) \((2<p<\infty\), \(n<2m)\) is compact (iii) for any \(m\in N\), \(H^ m_ r({\mathbb{R}}^ n)\hookrightarrow L^ 2({\mathbb{R}}^ n)\) is not compact, (iv) \(H^ m_ r({\mathbb{R}}^ n)\hookrightarrow L^ q({\mathbb{R}}^ n)\) \((q=\frac{2n}{n-2m},n>2m)\) is not compact.
0 references
compactness
0 references
noncompactness
0 references
embedding operators
0 references
Sobolev spaces of functions in radial form
0 references