On generalized Besov spaces \(B^{k,\Phi}(\Omega)\) (Q1822307)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On generalized Besov spaces \(B^{k,\Phi}(\Omega)\) |
scientific article; zbMATH DE number 4002815
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On generalized Besov spaces \(B^{k,\Phi}(\Omega)\) |
scientific article; zbMATH DE number 4002815 |
Statements
On generalized Besov spaces \(B^{k,\Phi}(\Omega)\) (English)
0 references
1986
0 references
In the paper some generalization of the Besov space \(B^ s_{p,p}(\Omega)\), where \(s>0\) and \(1<p<\infty\) is given. The generalized Besov space \(B^{k,\Phi}(\Omega)\), \(k>0\) and \(k\neq 1,2,...\), is defined as a subspace of the Orlicz space \(L^{\Phi}(\Omega)\), where \(\Omega\) is an arbitrary open set in N-dimensional real Euclidean space. The function \(\Phi:\Omega \times [0,+\infty)\to [0,+\infty)\) is convex, vanishing and continuous at zero for almost everywhere \(t\in \Omega\) and measurable for every \(u\geq 0\).
0 references
Besov space
0 references
Orlicz space
0 references