Arithmetic distance on compact symmetric spaces (Q1822367)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Arithmetic distance on compact symmetric spaces |
scientific article; zbMATH DE number 4002985
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Arithmetic distance on compact symmetric spaces |
scientific article; zbMATH DE number 4002985 |
Statements
Arithmetic distance on compact symmetric spaces (English)
0 references
1987
0 references
Using ''Helgason spheres'' (the minimal totally geodesic spheres in a compact irreducible symmetric space) the author defines an arithmetic distance for a compact irreducible symmetric space M and proves the following main Theorem. Let \(M=G_ p(K^ n)\), \(K={\mathbb{C}}\), H, or R, or \(M=AI(n)=SU(n)/SO(n)\), of rank greater than 1 and dimension greater than 3. Let L' be the geometric transformation group of M. Let \(L=\{\phi: M\to M: \phi\) be a diffeomorphism and \(\phi\) preserves arithmetic distance\(\}\). Then \(L=L'\).
0 references
Helgason spheres
0 references
arithmetic distance
0 references
irreducible symmetric space
0 references
transformation group
0 references