Quelques théorèmes ergodiques dans les espaces \(L^ p_ E\). (Some ergodic theorems in \(L^ p_ E\) spaces) (Q1822403)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quelques théorèmes ergodiques dans les espaces \(L^ p_ E\). (Some ergodic theorems in \(L^ p_ E\) spaces) |
scientific article; zbMATH DE number 4003137
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quelques théorèmes ergodiques dans les espaces \(L^ p_ E\). (Some ergodic theorems in \(L^ p_ E\) spaces) |
scientific article; zbMATH DE number 4003137 |
Statements
Quelques théorèmes ergodiques dans les espaces \(L^ p_ E\). (Some ergodic theorems in \(L^ p_ E\) spaces) (English)
0 references
1987
0 references
Let E be a separable Banach space and T be a linear and power bounded operator on \(L^ p_ E[0,1]\), \(1<p<\infty\). Some dominated and pointwise ergodic theorems for the operator T are proved. Necessary and sufficient conditions to get the pointwise convergence of the Cesaro means \(n^{-1}(I+T+...+T^ n)(f)\) of a function \(f\in L^ p_ E[0,1]\) are given.
0 references
Cesaro means
0 references
ergodic theorems
0 references