Champs de vecteurs invariants sur une algèbre de Lie réductive complexe. (Invariant vector fields on a reductive complex Lie algebra) (Q1822599)

From MaRDI portal





scientific article; zbMATH DE number 4112828
Language Label Description Also known as
English
Champs de vecteurs invariants sur une algèbre de Lie réductive complexe. (Invariant vector fields on a reductive complex Lie algebra)
scientific article; zbMATH DE number 4112828

    Statements

    Champs de vecteurs invariants sur une algèbre de Lie réductive complexe. (Invariant vector fields on a reductive complex Lie algebra) (English)
    0 references
    0 references
    1988
    0 references
    Let \({\mathfrak g}\) be a simple complex Lie algebra, \({\mathfrak h}\) be a Cartan subalgebra of \({\mathfrak g}\), W be the Weyl group of the pair (\({\mathfrak g},{\mathfrak h})\), and G be the adjoint group of \({\mathfrak g}\). A classical result of Chevalley asserts that there exists an isomorphism of the algebra of G-invariant polynomial functions on \({\mathfrak g}\) onto the algebra of W-invariant polynomial functions on \({\mathfrak h}\), induced by restriction. \textit{J. Sekiguchi} [J. Math. Soc. Japan 36, 147-159 (1984; Zbl 0539.17005)] proved that there exists a similar isomorphism between the Lie algebra of G-invariant vector fields on \({\mathfrak g}\) and a certain Lie algebra of vector fields on \({\mathfrak h}/W.\) In the paper under review, one shows that Sekiguchi's result (and some generalizations) can be obtained from a theorem of \textit{G. Schwarz} [Publ. Math., Inst. Hautes Etud. Sci. 51, 37-135 (1980; Zbl 0449.57009)].
    0 references
    invariant vector field
    0 references
    simple complex Lie algebra
    0 references
    Cartan subalgebra
    0 references
    Weyl group
    0 references
    G-invariant polynomial functions
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references