Kompakte Transformationsgruppen Steinscher Räume. (On compact transformation groups of Stein spaces) (Q1822666)

From MaRDI portal





scientific article; zbMATH DE number 4113008
Language Label Description Also known as
English
Kompakte Transformationsgruppen Steinscher Räume. (On compact transformation groups of Stein spaces)
scientific article; zbMATH DE number 4113008

    Statements

    Kompakte Transformationsgruppen Steinscher Räume. (On compact transformation groups of Stein spaces) (English)
    0 references
    0 references
    1989
    0 references
    The author studies holomorphic actions of a compact Lie group K on a reduced normal Stein space X, given by a continuous representation \(K\to Aut_{{\mathcal O}}X\). X//K denotes the quotient X/R with R the equivalent relation \(R=\{(x,y)\in X\times X\); \(f(x)=f(y)\) for all \(f\in {\mathcal O}(X)^ K\}\). \({\mathcal O}(X)^ K\) is the ring of holomorphic functions on X, invariant under K. The structure sheaf \({\mathcal O}^ K\) on X//K is defined by the presheaf \(V\to {\mathcal O}(\pi^{-1}V)^ K\), for \(V\subset X//K\), \(\pi\) : \(X\to X//K\). Then (X//K,\({\mathcal O}^ K)\) is proved to be a Stein space. In case \(K=S=(S^ 1)^ k=k\)-torus, if \(S\times X\to X\) is a holomorphic action on a Stein manifold X, and if \({\mathcal O}(X)^ S={\mathbb{C}}\), then X can be imbedded equivariantly in \({\mathbb{C}}^ n\) for some \(n\in {\mathbb{N}}\). If in addition the real dimension of the orbit at some point \(x\in X\) is equal to \(\dim_{{\mathbb{C}}}X\) then X is equivariantly biholomorphic to a Reinhardt domain in \({\mathbb{C}}^ n\).
    0 references
    compact transformation groups
    0 references
    Stein space
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references