Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) (Q1823317)

From MaRDI portal





scientific article; zbMATH DE number 4114881
Language Label Description Also known as
English
Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank)
scientific article; zbMATH DE number 4114881

    Statements

    Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) (English)
    0 references
    0 references
    0 references
    1990
    0 references
    There are some well-known invariant types for torsion-free abelian groups of finite rank, the inner, outer, sum and Richman type. In the classes of R-groups, of torsion-free locally nilpotent groups, of polyrational groups and especially torsion-free nilpotent groups of finite Prüfer rank a lot of similar results can be obtained. There is e.g. an inner type in the latter class, i.e. if G is the isolated hull of the elements \(x_ 1,...,x_ n\), then the intersection \(\cap^{n}_{i=1}t(x_ i)\) of the types of the elements \(x_ i\) is an invariant of the group G. Let G be a polyrational group, i.e. \(1=G_ 0\subset G_ 1\subset...\subset G_ n=G\) with rational quotients \(G_{i+1}/G_ i{\tilde \subset}{\mathbb{Q}}\). Then the sum type \(ST(G)=\sum^{n- 1}_{i=0}t(G_{i+1}/G_ i)\) is an invariant of the group G. Moreover we have e.g. a dimension formula \(ST(AB)+ST(A\cap B)=ST(A)+ST(B)\) if A and B are normal subgroups with isolated intersection.
    0 references
    invariant types
    0 references
    torsion-free locally nilpotent groups
    0 references
    polyrational groups
    0 references
    torsion-free nilpotent groups of finite Pruefer rank
    0 references
    inner type
    0 references
    isolated hull
    0 references
    sum type
    0 references
    dimension formula
    0 references
    normal subgroups with isolated intersection
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references