Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) (Q1823317)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) |
scientific article; zbMATH DE number 4114881
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) |
scientific article; zbMATH DE number 4114881 |
Statements
Invariante Typen in torsionsfreien, auflösbaren Gruppen endlichen Ranges. (Invariant types in torsion free soluble groups of finite rank) (English)
0 references
1990
0 references
There are some well-known invariant types for torsion-free abelian groups of finite rank, the inner, outer, sum and Richman type. In the classes of R-groups, of torsion-free locally nilpotent groups, of polyrational groups and especially torsion-free nilpotent groups of finite Prüfer rank a lot of similar results can be obtained. There is e.g. an inner type in the latter class, i.e. if G is the isolated hull of the elements \(x_ 1,...,x_ n\), then the intersection \(\cap^{n}_{i=1}t(x_ i)\) of the types of the elements \(x_ i\) is an invariant of the group G. Let G be a polyrational group, i.e. \(1=G_ 0\subset G_ 1\subset...\subset G_ n=G\) with rational quotients \(G_{i+1}/G_ i{\tilde \subset}{\mathbb{Q}}\). Then the sum type \(ST(G)=\sum^{n- 1}_{i=0}t(G_{i+1}/G_ i)\) is an invariant of the group G. Moreover we have e.g. a dimension formula \(ST(AB)+ST(A\cap B)=ST(A)+ST(B)\) if A and B are normal subgroups with isolated intersection.
0 references
invariant types
0 references
torsion-free locally nilpotent groups
0 references
polyrational groups
0 references
torsion-free nilpotent groups of finite Pruefer rank
0 references
inner type
0 references
isolated hull
0 references
sum type
0 references
dimension formula
0 references
normal subgroups with isolated intersection
0 references