Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field (Q1823483)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field |
scientific article; zbMATH DE number 4115463
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field |
scientific article; zbMATH DE number 4115463 |
Statements
Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field (English)
0 references
1990
0 references
We deal with the existence of timelike geodesics on the spacetime manifold \(({\mathbb{R}}^ 4,g)\), where the Lorentz tensor \(g=g(t,x)\) is T- periodic in t. By using a variant of a well-known curve shortening procedure, we show that there exists a timelike periodic trajectory on \(({\mathbb{R}}^ 4,g)\) i.e. a timelike geodesic \(z(s)=(t(s),x(s))\) such that \(x(s+1)=x(s)\) and \(t(s+1)=t(s)+T.\)
0 references
Lorentz metric
0 references
timelike periodic trajectory
0 references
timelike geodesics
0 references
0.92728215
0 references
0.9120691
0 references
0.9118438
0 references
0.91142195
0 references
0.9088792
0 references
0.89646053
0 references
0 references