On the real roots of a random algebraic polynomial (Q1824283)

From MaRDI portal





scientific article; zbMATH DE number 4117584
Language Label Description Also known as
English
On the real roots of a random algebraic polynomial
scientific article; zbMATH DE number 4117584

    Statements

    On the real roots of a random algebraic polynomial (English)
    0 references
    1989
    0 references
    For the random polynomial \(f(x)=\sum^{n}_{k=0}a_ kX_ k(\omega)x^ k\), when the coefficients X(\(\omega)\) belong to the domain of attraction of the symmetric stable law with index \(\alpha\), \(0<\alpha \leq 2\), \(a_ 0,a_ 1,...,a_ n\) are nonzero real numbers, the author proves \[ P\{\omega:N_ n(\omega)<\log n/32 \log ((k_ n/t_ n)(\log n)^{5/\alpha})\}<| G| e \log ((k_ n/t_ n)(\log n)^{5/\alpha})/\log n, \] where \(\max_{0\leq k\leq n}| a_ k| =k_ n\), \(\min_{0\leq k\leq n}| a_ k| =t_ n\), \(k_ n/t_ n=O(\log n)\), and \(N_ n\) is the number of real roots of f(x).
    0 references
    random polynomial
    0 references
    domain of attraction
    0 references
    symmetric stable law
    0 references
    0 references

    Identifiers