On the real roots of a random algebraic polynomial (Q1824283)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the real roots of a random algebraic polynomial |
scientific article; zbMATH DE number 4117584
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the real roots of a random algebraic polynomial |
scientific article; zbMATH DE number 4117584 |
Statements
On the real roots of a random algebraic polynomial (English)
0 references
1989
0 references
For the random polynomial \(f(x)=\sum^{n}_{k=0}a_ kX_ k(\omega)x^ k\), when the coefficients X(\(\omega)\) belong to the domain of attraction of the symmetric stable law with index \(\alpha\), \(0<\alpha \leq 2\), \(a_ 0,a_ 1,...,a_ n\) are nonzero real numbers, the author proves \[ P\{\omega:N_ n(\omega)<\log n/32 \log ((k_ n/t_ n)(\log n)^{5/\alpha})\}<| G| e \log ((k_ n/t_ n)(\log n)^{5/\alpha})/\log n, \] where \(\max_{0\leq k\leq n}| a_ k| =k_ n\), \(\min_{0\leq k\leq n}| a_ k| =t_ n\), \(k_ n/t_ n=O(\log n)\), and \(N_ n\) is the number of real roots of f(x).
0 references
random polynomial
0 references
domain of attraction
0 references
symmetric stable law
0 references
0 references
0 references
0.9580171
0 references
0.9542307
0 references
0.9526123
0 references