Linear transformations which leave controllable multiinput descriptor systems controllable (Q1824585)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Linear transformations which leave controllable multiinput descriptor systems controllable |
scientific article; zbMATH DE number 4118234
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Linear transformations which leave controllable multiinput descriptor systems controllable |
scientific article; zbMATH DE number 4118234 |
Statements
Linear transformations which leave controllable multiinput descriptor systems controllable (English)
0 references
1989
0 references
The controllability of descriptor systems of the form Eẋ \(=\) Ax \(+\) Bu is considered. In particular, it is shown that the only linear functions \(f:\quad {\mathbb{C}}^{n,n+m}\to {\mathbb{C}}^{n,n+m}\) of the form \(f(X)=UXV\) \((U\in {\mathbb{C}}^{n,n}\), \(V\in {\mathbb{C}}^{n+m,n+m})\) which are controllability invariants satisfy: (i) U nonsingular, (ii) \(V=\left[ \begin{matrix} Q&0\\ 0&I \end{matrix} \right]\bar V\) where \(\bar V\) is a product of matrices of the types \(\left[ \begin{matrix} I&0\\ F&I \end{matrix} \right]\), \(\left[ \begin{matrix} I&0\\ 0&W \end{matrix} \right]\) and Q, W are nonsingular.
0 references
descriptor systems
0 references
controllability invariants
0 references
0.9794753
0 references
0.90695614
0 references
0 references
0.8783701
0 references
0.86898667
0 references
0 references
0.8651477
0 references
0.86388564
0 references
0.8604628
0 references