On the power series coefficients of the Riemann zeta function (Q1824655)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the power series coefficients of the Riemann zeta function |
scientific article; zbMATH DE number 4118454
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the power series coefficients of the Riemann zeta function |
scientific article; zbMATH DE number 4118454 |
Statements
On the power series coefficients of the Riemann zeta function (English)
0 references
1989
0 references
Let \(\gamma_ n=\lim_{N\to \infty}(\sum^{N}_{k=1}\frac{\log^ nk}{k}-\frac{\log^{n+1}N}{n+1})\) be the n-th coefficient of the Laurent expansion of \(\zeta\) (s) at \(s=1\), namely \[ \zeta (s)=\frac{1}{s- 1}+\sum^{\infty}_{n=0}\frac{(-1)^ n}{n!}\gamma_ n(s-1)^ n. \] The author obtains an explicit asymptotic expansion of \(\gamma_ n\), too complicated to be reproduced here.
0 references
Riemann zeta function
0 references
gamma-function
0 references
generalized Euler constants
0 references
Laurent expansion
0 references
explicit asymptotic expansion
0 references