An invariance property of Hankel forms (Q1824667)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An invariance property of Hankel forms |
scientific article; zbMATH DE number 4118506
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An invariance property of Hankel forms |
scientific article; zbMATH DE number 4118506 |
Statements
An invariance property of Hankel forms (English)
0 references
1989
0 references
Let k be an arbitrary field, x a variable, k(x) a function field, \(y\in g(x)/h(x)\in k(x),\) \(n=[k(x):k(y)].\) The authors introduce a nondegenerate bilinear form \(H_{xy}\) which they call Hankel form. They show, if \(x'=\lambda (x)\) and \(y'=\mu (y),\) where \(\lambda,\mu \in PGL_ 2(k)\), then \[ H_{x'y'}\simeq \det \lambda \cdot \det \mu \cdot H_{xy}. \]
0 references
invariance property
0 references
nondegenerate bilinear form
0 references
Hankel form
0 references