Espacios de Fréchet de generación débilmente compacta. (Weakly compactly generated Fréchet spaces) (Q1824813)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Espacios de Fréchet de generación débilmente compacta. (Weakly compactly generated Fréchet spaces) |
scientific article; zbMATH DE number 4118962
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Espacios de Fréchet de generación débilmente compacta. (Weakly compactly generated Fréchet spaces) |
scientific article; zbMATH DE number 4118962 |
Statements
Espacios de Fréchet de generación débilmente compacta. (Weakly compactly generated Fréchet spaces) (English)
0 references
1987
0 references
Let E be an infinite dimensional Fréchet space which is weakly compactly generated (in the sense that there exists a total absolutely convex and weakly compact subset W of E). We fix such a W and an increasing fundamental sequence \((\| \cdot \|_ n)_ n\) of continuous seminorms for E. Let \(\omega\) denote the first infinite ordinal and \(\mu\) the first ordinal whose cardinal number equals the density character d(E) of E. The author proves that there exists a resolution \(\{P_{\alpha}\); \(\omega\leq \alpha \leq \mu \}\) of the identity in E such that \(\| P_{\alpha}\|_ m=1\) and \(P_{\alpha}(W)\subset W\) for \(\omega\leq \alpha \leq \mu\), \(m=1,2,... \). (Here resolution of the identity means that \((P_{\alpha})_{\alpha}\) is an equicontinuous family of projections on E with \(P_{\mu}=id_ E\), \(P_{\alpha}\circ P_{\beta}=P_{\beta}=P_{\beta}\circ P_{\alpha}\) for \(\omega\leq \beta \leq \alpha \leq \mu\), \(d(P_{\alpha}(E))\leq | \alpha |\) for \(\omega\leq \alpha \leq \mu\) and such that for any limit ordinal \(\alpha >\omega\), \(P_{\alpha}(E)\) equals the closure of \(\cup \{P_{\eta}(E)\); \(\omega \leq \eta <\alpha \}.)\)- For Banach spaces E this result is due to \textit{D. Amir} and \textit{J. Lindenstrauss} [Ann. Math., II. Ser. 8, 35-46 (1968; Zbl 0164.149)], but the present proof is simpler and easily extends to Fréchet spaces E.
0 references
non-separable Fréchet spaces
0 references
Amir-Lindenstrauss theorem
0 references
weakly compactly generated
0 references
resolution of the identity
0 references
equicontinuous family of projections
0 references
0.72778606
0 references
0.71312785
0 references
0.6963277
0 references
0.6878582
0 references