Maximizing \(E\max _{1\leq k\leq n}S^+_ k/ES^+_ n:\) A prophet inequality for sums of i.i.d. mean zero variates (Q1825517)

From MaRDI portal





scientific article; zbMATH DE number 4121140
Language Label Description Also known as
English
Maximizing \(E\max _{1\leq k\leq n}S^+_ k/ES^+_ n:\) A prophet inequality for sums of i.i.d. mean zero variates
scientific article; zbMATH DE number 4121140

    Statements

    Maximizing \(E\max _{1\leq k\leq n}S^+_ k/ES^+_ n:\) A prophet inequality for sums of i.i.d. mean zero variates (English)
    0 references
    0 references
    1989
    0 references
    Let \(X_ 1,X_ 2,..\). be i.i.d. mean zero random variables. Put \(S_ k=X_ 1+...+X_ k\). It is proved that for any \(n\geq 1\) \[ E(\max_{1\leq k\leq n\quad}S^+_ k)\leq (2-n^{-1})E S\quad^+_ n. \] This result is nearly sharp.
    0 references
    optimal stopping
    0 references
    prophet inequality
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references