Limit theorem for the Riemann zeta-function on the critical line. III (Q1825894)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Limit theorem for the Riemann zeta-function on the critical line. III |
scientific article; zbMATH DE number 4122071
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Limit theorem for the Riemann zeta-function on the critical line. III |
scientific article; zbMATH DE number 4122071 |
Statements
Limit theorem for the Riemann zeta-function on the critical line. III (English)
0 references
1989
0 references
[For parts I, II, cf. ibid. 27, No. 1, 113--132 (1987; Zbl 0641.10031); ibid. 27, No. 3, 489--500 (1987; Zbl 0641.10032).] Es sei \(\text{mes }A\) das Lebesguesche Maß einer L-meßbaren Menge \(A\) und für \(T>e\), \(\sigma>0\) \[ F_{\sigma,T}(x)=(1/T)\text{ mes}\{t\in [0,T] | \mid | \zeta (\sigma+it)|^{\epsilon_ T}<x\} \] mit \(\epsilon_ T=(1/2 \ln \ln T)^{-1/2}\). Der Verf. gibt einen neuen Beweis von \[ \lim_{T\to \infty}F_{1/2,T}(x)= (1/\sqrt{2\pi})\int^{\ln x}_{-\infty}e^{-u^ 2/2}\, du\text{ für }x>0 \] mit Hilfe eines analogen Grenzwertsatzes für \(F_{\sigma_ T,T}(x)\), wo \(\sigma_ T\) eine spezielle Funktion mit \(\sigma_ T\to~1/2\) \((T\to \infty)\) bedeutet [vgl. Mat. Sb., Nov. Ser. 135(177), No. 1, 3--11 (1988; Zbl 0649.10026)].
0 references
limit theorem
0 references
Riemann zeta-function
0 references
critical
0 references
line
0 references