On the dual of a finitely generated multiplication module. II (Q1825906)

From MaRDI portal





scientific article; zbMATH DE number 4122094
Language Label Description Also known as
English
On the dual of a finitely generated multiplication module. II
scientific article; zbMATH DE number 4122094

    Statements

    On the dual of a finitely generated multiplication module. II (English)
    0 references
    0 references
    1988
    0 references
    [For part I see the preceding review.] Let R be a commutative ring and M a finitely generated \((= f.g.)\) multiplication R-module, i.e., every submodule N of M has the form JM for some ideal J of R. Putting \(D=AnnAnn(M)\) and \(M^*=\) the dual of M, the author shows: Theorem. Let M be a f.g. multiplication module, and assume that D is a projective (or flat) ideal, then \(M^*\) is a projective (resp. flat) module. Theorem. Let M be a f.g. multiplication module. Then \(M^*\) is a multiplication module if and only if D is a multiplication ideal.
    0 references
    finitely generated multiplication module
    0 references
    dual
    0 references
    module
    0 references
    projective module
    0 references
    flat module
    0 references
    multiplication ideal
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references