About two trigonometric matrices (Q1826814)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: About two trigonometric matrices |
scientific article; zbMATH DE number 2081901
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | About two trigonometric matrices |
scientific article; zbMATH DE number 2081901 |
Statements
About two trigonometric matrices (English)
0 references
6 August 2004
0 references
The author studies the four matrices \[ M_{r,s} : =\sqrt{2}\left[ \sin \left(\pi {rmn}/{s}\right)\right] _{0<m,n<s},M_{2r,s}:=\sqrt{2}\left[ \sin \left( {2}\pi {rmn}/{s} \right) \right] _{0<m,n<s}, \] \[ M_{r,s}^{\prime } : =\sqrt{2}\left[ \sin \left( \pi{rmn}/{s} \right) \right] _{\substack{ 0<m,n<s\\ ( mn,s) =1}},M_{2r,s}^{\prime }:=\sqrt{2}\left[ \sin \left( {2}\pi{rmn}/{s} \right) \right] _{\substack{ 0<m,n<s\\ ( mn,s) =1}}, \] where \(r,s\) are odd integers with \(( r,s) =1\) and \(s>1\). More specifically the paper determines the eigenvalues of the above matrices and their multiplicities, as well as their characteristic polynomials.
0 references
trigonometric matrices
0 references
Dirichlet characters
0 references
eigenvalues
0 references
characteristic polynomials
0 references
0 references