Indecomposability of ideals of \(\mathfrak p\)-adic number fields (Q1827517)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Indecomposability of ideals of \(\mathfrak p\)-adic number fields |
scientific article; zbMATH DE number 2083526
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Indecomposability of ideals of \(\mathfrak p\)-adic number fields |
scientific article; zbMATH DE number 2083526 |
Statements
Indecomposability of ideals of \(\mathfrak p\)-adic number fields (English)
0 references
6 August 2004
0 references
Let \(p\) be an odd prime and let \(K/k\) be a \(p\)-extension of local fields with Galois group \(G\). The author proves that any ideal \(A\) of \(K\) is \(O[G]\)-indecomposable if and only if \(| G_1|\) does not divide the different \(D_{K/k}\). Here \(O\) denotes the ring of integers of \(k\) and \(G_1\) denotes the first ramification group of \(K/k\). \textit{S. V. Vostokov} [Vestn. St. Petersbg. Univ., Math. 26, No. 2, 10--21 (1993; Zbl 0841.11059)] proved the same result in the special case that \(K\) is the composite of an unramified extension with a fully ramified extension of \(k\).
0 references
Galois module structure
0 references
Local fields
0 references
Ideals
0 references
Indecomposability
0 references
0.9005088
0 references
0.89588726
0 references
0.89517117
0 references
0.8896061
0 references
0.8878837
0 references
0 references
0.88314855
0 references
0.88194776
0 references