The ``Pellian equation'' and some series for \(\pi\). (Q1829662)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The ``Pellian equation and some series for \(\pi\). |
scientific article; zbMATH DE number 2563214
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The ``Pellian equation'' and some series for \(\pi\). |
scientific article; zbMATH DE number 2563214 |
Statements
The ``Pellian equation'' and some series for \(\pi\). (English)
0 references
1930
0 references
\(\dfrac{p_r}{q_r}\) (\(r = 1\), 2, \dots ) seien diejenigen rationalen Approximationen von \(\dfrac{1}{\sqrt{3}}\), die man durch die ganzzahligen Lösungen \(p_r\), \(q_r\) der \textit{Pell}schen Gleichung \(3y^2 + 1 = z^2\) erhält, also \(p_1 = 0\), \(q_1=1\); \(p_2=1\), \(q_2=2\); \(p_3=4\), \(q_3 = 7\); usw. Dann gewinnt man wegen \(\text{arc\,tg}\dfrac{1}{\sqrt{3}}=\dfrac{\pi }{6}\) eine rasch konvergierende Reihe für \(\dfrac{\pi }{6}\): \[ \frac{\pi }{6}=\textstyle \sum\limits_{r} \displaystyle \biggl(\text{arc\,tg}\frac{p_r}{q_r} \text{arc\,tg}\frac{p_{r-1}}{q_{r-1}}\biggr)= \textstyle \sum\limits_{r} \displaystyle\text{arc\,tg} \frac{1}{2(p_r-p_{r-1})^2}. \] Entsprechend werden Reihen für \(\dfrac{\pi }{12}\) und \(\dfrac{\pi }{8}\) aufgestellt.
0 references