On the maximum of bivariate normal random variables (Q1848529)

From MaRDI portal





scientific article; zbMATH DE number 1833865
Language Label Description Also known as
English
On the maximum of bivariate normal random variables
scientific article; zbMATH DE number 1833865

    Statements

    On the maximum of bivariate normal random variables (English)
    0 references
    0 references
    0 references
    21 November 2002
    0 references
    Let \((X,Y)\) be a bivariate Gaussian random vector with \(E X=\mu\), \(\operatorname{Var} X=\sigma^2\), \(\operatorname {Cov} XY=\eta\). Let \(Z=\max[X,Y]\). The author demonstrates that \(\partial E Z/\partial \sigma>0\), \(\partial E Z/\partial \eta<0\), but \(\partial \operatorname{Var} Z/\partial\mu\), \(\partial \operatorname{Var} Z/\partial\sigma\), \(\partial \operatorname{Var} Z/\partial\eta\) can be \(<\), \(=\) or \(>\) for different combinations of \((X,Y)\) parameters.
    0 references
    mean
    0 references
    variance
    0 references
    inequality
    0 references
    monotonicity
    0 references

    Identifiers