Eigenvectors and diagonalizability of \(HST\) matrices (Q1848646)

From MaRDI portal





scientific article; zbMATH DE number 1827440
Language Label Description Also known as
English
Eigenvectors and diagonalizability of \(HST\) matrices
scientific article; zbMATH DE number 1827440

    Statements

    Eigenvectors and diagonalizability of \(HST\) matrices (English)
    0 references
    13 November 2002
    0 references
    The author considers an \(n\times n\) harmonic sequence termed (HST) matrix: \[ A_h =\begin{pmatrix} h&k_1&k_2&\ldots & k_{n-1}\\ k_1& h & k_2&\ldots & k_{n-1}\\ \ldots&\ldots&\ldots&\dots&\ldots\\ k_1&k_2&k_3&\ldots&h \end{pmatrix}, \tag{1} \] where \(h, k_1, k_2, \dots , k_{n-1}\) are arbitrary complex numbers. It is proved that the set \[ h+ \sigma, h-k_1, \dots , h- k_{n-1}, \] where \[ \sigma = k_1 + k_2 + \dots + k_{n-1}, \] is the spectrum of the matrix \(A_h\) independent from the values of the parameters \(h_1, k_1,\dots , k_{n-1}\). It is shown that \(A_h\) can be diagonalized if the following conditions are fulfilled: \[ \sigma + k_i \neq 0,\;i=1, 2,\dots , n-1 . \] The eigenvalues of the matrix (1) are found.
    0 references
    HST-matrices
    0 references
    eigenvectors
    0 references
    diagonalizability
    0 references
    harmonic sequence termed matrix
    0 references
    0 references

    Identifiers